什么是斯皮尔曼相关系数

让每个人平等地提升自我2020-03-12向TA提问最低0.27元开通文库会员,查看完整内容>

SpearmanRank(斯皮尔曼等级)相关系数1、简介在统计学中,斯皮尔曼等级相

关系数以CharlesSpearman命名,并经常用希腊字母ρ(rho)表示其值。斯皮尔曼等级相关系数用来估计两个变量X、Y之间的相关性,其中变量间的相关性可以使用单调函数来描述。如果两个变量取值的两个集合中均不存在相同的两个元素,那么,当其中一个变量可以表示为另一个变量的很好的单调函数时(即两个变量的变化趋势相同),两个变量之间的ρ可以达到+1或-1。假设两个随机变量分别为X、Y(也可以看做两个集合),它们的元素个数均为N,两个随即变量取的第i(1=i=N)个值分别用Xi、Yi表示。对X、Y进行排序(同时为升序或降序),得到两个元素排行集合x、y,其中元素xi、yi分别为Xi在X中的排行以及Yi在Y中的排行。将集合x、y中的元素对应相减得到一个排行差分集合d,其中di=xi-yi,1=i=N。随机变量X、Y之间的斯皮尔曼等级相关系数可以由x、y或者d计算得到,其计算方式如下所示:由排行差分集合d计算而得(公式一):由排行集合x、y计算而得(斯皮尔曼等级相关系数同时也被认为是经过排行的两个随即变量的皮尔逊相关系数,以下实际是计算x、y的皮尔逊相关系数)(公式二):以下是一个计算集合中元素排行的例子(仅适用于斯皮尔曼等级相关系数的计算)这里需要注意:当变量的两个值相同时,它们的排行是通过对它们位置进行平均而得到的。2、适用范围斯皮尔曼等级相关系数对数据条件的要求没有皮尔逊相

在 统计学中, 以查尔斯·斯皮尔曼命名的斯皮尔曼等级相关系数,即斯皮尔曼相关系数。

它是衡量两个变量的依赖性的非参数 指标。经常用希腊字母ρ表示。它利用单调方程评价两个统计变量的相关性。 如果数据中没有重复值, 并且当两个变量完全单调相关时,斯皮尔曼相关系数则为+1或1。

斯皮尔曼相关系数被定义成等级变量之间的皮尔逊相关系数。对于样本容量为n的样本,n个原始数据被转换成等级数据,相关系数ρ为

斯皮尔曼相关系数表明X(独立变量)和Y(依赖变量)的相关方向。如果当X增加时,Y趋向于增加,斯皮尔曼相关系数则为正。如果当X增加时,Y趋向于减少,斯皮尔曼相关系数则为负。斯皮尔曼相关系数为零表e5a48de588b6e799bee5baa6e79fa5e3531明当X增加时Y没有任何趋向性。

当X和Y越来越接近完全的单调相关时,斯皮尔曼相关系数会在绝对值上增加。当X和Y完全单调相关时,斯皮尔曼相关系数的绝对值为1。

斯皮尔曼相关系数经常被称作非参数的。这里有两层含义:

1.首先,当X和Y的关系是由任意单调函数描述的,则它们是完全皮尔逊相关的。与此相应的,皮尔逊相关系数只能给出由线性方程描述的X和Y的相关性。

2.其次,斯皮尔曼不需要先验知识(也就是说,知道其参数)便可以准确获取XandY的采样概率分布。

要知道什么是斯皮尔曼等级相关(Spearman Rank Correlation),先了解什么是斯皮尔曼等级相关。

斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”。斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要e799bee5baa6e997aee7ad94e58685e5aeb两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。

斯皮尔曼等级相关系数是反映两组变量之间联系的密切程度,它和相关系数r一样,取值在-1到+1之间,所不同的是它是建立在等级的基础上计算的。

等级相关系数亦称为“秩相关系数”,是反映等级相关程度的统计分析指标。常用的等级相关分析方法有Spearman等级相关和Kendall等级相关等。

3、按下式计算相关系数:Rs=1-[6*∑Di^2/(n*n^2-1)]其中:等级相关系数记为rs,di为两变量每一对样本的等级之差,n为样本容量。

等级相关系数与相关系数一样,取值-1到+1之间,rs为正表示正相关,rs为负表示负相关,rs等于零为零相关,区别是它是建立在等级的基础上计算的,较适用于反映序列变量的相关。等级相关系数和通常的相关系数一样,它与样本的容量有关,尤其是在样本容量比较小的情况下,其变异程度较大,等级相关系数的显著性检验与普通的相关系数的显著性检验相同。

You may also like...

Popular Posts

发表评论

电子邮件地址不会被公开。 必填项已用*标注